

1. Let $f(x)$ be a function with Taylor series given by

$$
\sum_{n=0}^{\infty} e_{n}(x-2)^{n}
$$

and suppose the radius of convergence is $R=5$.
(a) Where is the Taylor series centered and what can you say about the interval of convergence?

The Taylor series is centered at $a=2$. The interval of convergence is one of the following four options

$$
[-3,7],[-3,7),(-3,7],(-3,7)
$$

(b) Recall that the coefficients of a Taylor series are given by

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

If $c_{13}=104$, what is $f^{(13)}(2)$?

$$
\begin{aligned}
& 104=c_{13}=\frac{f^{(13)}(2)}{13!} \\
& f^{(13)}(2)=104 \cdot 13!
\end{aligned}
$$

(c) If possible, write a series for $f(0)$. If it is not possible, explain why not.

$$
f(0)=\sum_{n=0}^{\infty} c_{n}(-2)^{n}
$$

(d) If possible, write a series for $f(8)$. If it is not possible, explain why not. Since 8 is outside the interval of convergence, we cannot express $f(8)$ as a series with the given information.
2. Write a Maclawin series for $f(x)=x \sin (2 x)$. What is the interval of convergence?

$$
\begin{aligned}
& \sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} I_{0} C: \mathbb{R} \\
& \sin (2 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+1}}{(2 n+1)!} \\
& x \sin (2 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+2}}{(2 n+1)!} I_{0} C: \mathbb{R} \quad
\end{aligned}
$$

3. Write a Maclaurin series for $f(x)=\frac{x^{4}}{1+x}$.

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad I_{0} c:|x|<1 \\
& \frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \quad I_{0} c:|x|<1 \quad \text { i.e., } \\
& |x|<1
\end{aligned} \quad \begin{aligned}
& \frac{x^{4}}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+4} \quad I_{0} c:|x|<1 \quad \text { ie, }(-1,1)
\end{aligned}
$$

4. Express $\int \frac{e^{x}}{x} d x$ as an infinite series.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad I_{0} C: \mathbb{R} \\
& \frac{e^{x}}{x}=\sum_{n=0}^{\infty} \frac{x^{n-1}}{n!}=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} \quad I_{0} C: \mathbb{R} \\
& \int \frac{e^{x}}{x} d x=\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot n!}\right)+\ln |x|+C I_{0} C: \mathbb{R}
\end{aligned}
$$

* This is an infinite series but not a power series. I meant to subtract of the pesky $\frac{1}{x}$ term. My bad!

5. Use series to approximate $\int_{0}^{1} \sqrt{1+x^{4}} d x$ correct to two decimal places.

* This question has a typo. The integral needs to have an upper limit less than I to be done the nice way 1 intended. If you attempted this question, you got full credit. See section 8.7, example 11 for a worked out example of this method.

6. Use series to evaluate the following limit'

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}} \\
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad I_{0}(: \mathbb{R} \\
& \sin x-x= \\
& \begin{aligned}
& \frac{\sin x-x}{x^{3}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}}{(-1)^{n} x^{2 n-2}} \\
&(2 n+1)! \\
&=\frac{-1}{3!}+\frac{x^{2}}{5!}-\frac{x^{4}}{7!}+\cdots \\
& \begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}} & =\lim _{x \rightarrow 0}\left(\frac{-1}{3!}+\frac{x^{2}}{5!}-\frac{x^{4}}{7!}+\cdots\right) \\
& =\frac{-1}{3!}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

7. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$.

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\pi}{6}\right)^{2 n}}{(2 n)!}=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

8. Give the radius and interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{2 n}(2 x-1)^{n+1}
$$

Radius:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{5^{n+1}}{2(n+1)}(2 x-1)^{n+2} / \frac{5^{n}}{2 n}(2 x-1)^{n+1}\right| \\
& \quad=\lim _{n \rightarrow \infty}\left|\frac{5(2 x-1) n}{n+1}\right| \\
& \quad=5|2 x-1|<1
\end{aligned}
$$

$$
|2 x-1|<\frac{1}{5}
$$

$$
-\frac{1}{5}<2 x-1<\frac{1}{5}
$$

$$
\frac{4}{5}<2 x<\frac{6}{5}
$$

$$
\frac{2}{5}<x<\frac{3}{5}
$$

$$
R=\frac{1}{10}
$$

End pts: $x=\frac{2}{5}: \quad \sum_{n=1}^{\infty} \frac{5^{n}}{2 n}\left(2 \cdot \frac{2}{5}-1\right)^{n+1}=\sum_{n=1}^{\infty} \frac{5^{n}}{2 n}\left(\frac{-1}{5}\right)^{n+1}$

$$
\xrightarrow{\text { Alternating }} \text { harmonic-ish }^{\text {and }}=\frac{-1}{5} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n}
$$ converges

$$
\begin{aligned}
& x=\frac{3}{5}: \sum_{n=1}^{\infty} \frac{5^{n}}{2 n}\left(2 \cdot \frac{3}{5}-1\right)^{n+1}=\sum_{n=1}^{\infty} \frac{5^{n}}{2 n}\left(\frac{1}{5}\right)^{n+1} \\
&=\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{2 n} \longleftarrow \text { harmonic-ish } \\
& \text { DIVERGES }
\end{aligned}
$$

Interval of Convergence: $\left[\frac{2}{5}, \frac{3}{5}\right)$
9. Which function is a solution to the differential equation

$$
y^{\prime \prime}+y=2 \cos (x) ?
$$

(a)

$$
\begin{aligned}
& y^{\prime} \cos (2 x) \\
& y^{\prime}=-2 \sin (2 x) \\
& y^{\prime \prime}=-4 \cos (2 x)
\end{aligned} \quad y^{\prime \prime}+y=-4 \cos (2 x)+\cos (2 x)=-3 \cos (2 x) 8 \text { } \begin{aligned}
& \neq 2 \cos (x) \\
\text { sad day } &
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\sin \left(x^{2}\right) \\
& y^{\prime \prime}=2 x \cos \left(x^{2}\right) \\
& y^{\prime \prime}=-4 x^{2} \sin \left(x^{2}\right)+2 \cos \left(x^{2}\right) \\
& \quad y^{\prime \prime}+y=-4 x^{2} \sin \left(x^{2}\right)+2 \cos \left(x^{2}\right)+\sin \left(x^{2}\right) \neq 2 \cos (x)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& y=x \sin (x) \\
& y^{\prime}=\sin (x)+x \cos (x) \\
& y^{\prime \prime}=\cos (x)+\cos (x)-x \sin (x) \\
& \quad y^{\prime \prime}+y=2 \cos (x)-x \sin (x)+x \sin (x)=2 \cos (x) \\
& \text { WOO! }
\end{aligned}
$$

10. Which function is a solution to the differential equation

$$
y=\left(\frac{y^{\prime \prime}}{6}\right)^{3} ?
$$

(a)

$$
\begin{aligned}
& y=(x-2)^{3} \\
& y^{\prime}=3(x-2)^{2} \\
& y^{\prime \prime}=6(x-2)
\end{aligned}
$$

11. Solve the differential equation $y^{\prime}=\frac{x y^{3}}{\sqrt{1+x^{2}}}$ given the initial condition $y(0)=-1$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x y^{3}}{\sqrt{1+x^{2}}} \\
& y^{-3} \frac{d y}{d x}=\frac{x}{\sqrt{1+x^{2}}} \\
& \int y^{-3} d y=\int \frac{x}{\sqrt{1+x^{2}}} d x \\
& y(0)=-1: \\
& \frac{y^{-2}}{-2}=\sqrt{1+x^{2}}+C \\
& \frac{-1}{2 y^{2}}=\sqrt{1+x^{2}}+C \\
& \frac{-1}{2}=1+c \\
& c=-\frac{3}{2} \\
& \int \frac{-1}{2 y^{2}}=\sqrt{1+x^{2}}-\frac{3}{2} \\
& -2 y^{2}=\frac{1}{\sqrt{1+x^{2}}-\frac{3}{2}} \\
& y^{2}=\frac{1}{2 \sqrt{1+x^{2}}-3} \\
& y=\frac{-1}{\sqrt{2 \sqrt{1+x^{2}}-3}}
\end{aligned}
$$

12. A tank contains 1000 L of pure water.

- Brine containing 0.5 kg of salt per Liter enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$.
- Brine that contains 0.4 kg of salt per liter enters the tank at a rate of $10 \mathrm{~L} / \mathrm{mm}$.
- Tank is kept thoroughly mixed
- Brine drains from the tank at a rate of $15 \mathrm{~L} / \mathrm{min}$
- How much salt is in the tank after t minutes?
- How much salt is in the tank after 1 how?

Let $C(t)$ be the concentration of salt in the tank at time t and $l e t s(t)$ be the amount of salt in the tank at time t.

$$
C(0)=0, S(0)=0 \quad C(t)=\frac{S(t)}{1000}
$$

Flow of salt into the tank: $0.5 \cdot 5+0.4 \cdot 10=6.5 \mathrm{~kg} / \mathrm{min}$
Flow of salt out of the tank: $\quad C(t) \cdot 15=\frac{15 \delta(t)}{1000}$
Net change of salt in the tank:

$$
\begin{aligned}
& \frac{d S}{d t}=6.5-\frac{15 \delta(t)}{1000}=\frac{650-15 \delta(t)}{1000} \\
& \int \frac{1}{650-15 S(t)} \frac{d S}{d t} d t=\int \frac{1}{1000} d t \\
& \ln |650-15 S(t)|=\frac{1}{1000} t+C \\
& 650-15 S(t)=C e^{\frac{1}{1000} t} \\
& 650=C \\
&-15 S(t)=\frac{650}{15}(1 \\
& S(60)=\frac{650}{15} \\
&=650 e^{\frac{1}{1000} t}-650
\end{aligned}
$$

